Three-Dimensional ¹³C Shift/¹H–¹⁵N Coupling/¹⁵N Shift Solid-State NMR Correlation Spectroscopy

Zhengtian Gu and Stanley J. Opella

Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104

Received July 14, 1998; revised September 22, 1998

Triple-resonance experiments capable of correlating directly bonded and proximate carbon and nitrogen backbone sites of uniformly ¹³C- and ¹⁵N-labeled peptides in stationary oriented samples are described. The pulse sequences integrate cross-polarization from ¹H to ¹³C and from ¹³C to ¹⁵N with flip-flop (phase and frequency switched) Lee-Goldburg irradiation for both ¹³C homonuclear decoupling and ¹H-¹⁵N spin exchange at the magic angle. Because heteronuclear decoupling is applied throughout, the three-dimensional pulse sequence yields ¹³C shift/¹H-¹⁵N coupling/15N shift correlation spectra with single-line resonances in all three frequency dimensions. Not only do the three-dimensional spectra correlate ¹³C and ¹⁵N resonances, they are well resolved due to the three independent frequency dimensions, and they can provide up to four orientationally dependent frequencies as input for structure determination. These experiments have the potential to make sequential backbone resonance assignments in uniformly ¹³C- and ¹⁵N-labeled proteins. © 1999 Academic Press

Key Words: triple-resonance; three-dimensional; cross-polarization; solid-state NMR spectroscopy; assignment; peptide.

INTRODUCTION

Now that it is possible to obtain highly resolved solid-state NMR spectra of uniformly ¹⁵N-labeled membrane proteins in oriented bilayer samples (*1*, *2*), efficient sequential resonance assignment methods are needed. In this article, we describe a triple-resonance experiment capable of correlating both directly bonded and proximate carbon and nitrogen backbone sites of uniformly ¹³C- and ¹⁵N-labeled polypeptides in stationary oriented samples. This approach is influenced by the variety of heteronuclear experiments developed for making sequential assignments in solution NMR studies of proteins (*3*), and a method for assigning ¹³C and ¹⁵N resonances of powder samples in magic angle sample spinning experiments demonstrated by Sun *et al.* (*4*).

Both the two- and the three-dimensional versions of the experiment diagrammed in Fig. 1 integrate cross-polarization from ¹H to ¹³C, flip-flop (phase and frequency switched) Lee–Goldburg irradiation (5–7) for ¹³C homonuclear decoupling during t_1 , cross-polarization from ¹³C to ¹⁵N (8), and, finally, detection of ¹H and ¹³C decoupled ¹⁵N signals. The three-

dimensional experiment adds an interval of spin exchange at the magic angle (SEMA) (9) for measurement of ${}^{1}\text{H}{-}{}^{15}\text{N}$ heteronuclear dipolar coupling frequencies. Heteronuclear decoupling is accomplished throughout the experiment with continuous RF irradiation at the ${}^{1}\text{H}$, ${}^{15}\text{N}$, and ${}^{13}\text{C}$ resonance frequencies. The resulting spectra have intrinsically high resolution with single-line resonances in all frequency dimensions, correlate ${}^{13}\text{C}$ and ${}^{15}\text{N}$ resonances from directly bonded and proximate molecular sites, and provide up to four orientationally dependent frequencies for each residue as input for structure determination (*10*).

The results of the triple-resonance experiment are illustrated with spectra of single crystal samples of ¹³C- and ¹⁵N-labeled *N*-acetylglycine (NAG), which serves as a model for the backbone of uniformly ¹³C- and ¹⁵N-labeled polypeptides. The chemical and crystal structures (11) of N-acetylglycine are shown in Fig. 2. There are two magnetically inequivalent molecules in each unit cell. The one-dimensional ¹³C shift spectra demonstrate the ability of the experimental procedures to decouple ¹³C homonuclear dipolar interactions between directly bonded ¹³C sites. The two-dimensional ¹³C shift/¹⁵N shift spectrum demonstrates the correlation of the amide ¹⁵N resonance with the directly bonded carbonyl carbon and α -carbon ¹³C resonances. The three-dimensional ¹³C shift/¹H-¹⁵N coupling/¹⁵N shift spectrum is displayed as a cube and can be analyzed as two-dimensional ¹³C shift/¹⁵N shift planes associated with the ¹H-¹⁵N coupling frequencies for individual amide sites.

RESULTS AND DISCUSSION

The pulse sequence for the three-dimensional version of the triple-resonance experiment is shown in Fig. 1B. It starts with conventional spin-lock cross-polarization from ¹H to ¹³C, followed by flip-flop Lee–Goldburg irradiation that spin locks the resulting ¹³C magnetization at the magic angle where it evolves during the t_1 period. The combination of flip-flop Lee–Goldburg irradiation of the ¹³C spins and continuous irradiation of the ¹H and ¹⁵N spins suppresses both ¹³C homonuclear and ¹H/¹³C and ¹⁵N/¹³C heteronuclear dipolar couplings during the t_1 period. Thus, during t_1 the ¹³C magnetization is affected

FIG. 1. (A) Pulse sequence for two-dimensional, triple-resonance ${}^{13}C/{}^{15}N$ heteronuclear correlation spectroscopy. Each t_1 increment corresponds to an integral number of cycles defined by the flip-flop Lee–Goldburg irradiation. (B) Pulse sequence for a three-dimensional, triple-resonance ${}^{13}C/{}^{1}H-{}^{15}N/{}^{15}N$ experiment. Each t_1 and t_2 increment corresponds to an integral number of cycles defined by the flip-flop Lee–Goldburg irradiation.

only by the ¹³C chemical shift interaction, which is scaled by 0.58 due to the homonuclear decoupling. Each t_1 increment corresponds to one complete flip-flop Lee–Goldburg cycle; Y + LG indicates that the RF irradiation has Y phase and a positive frequency offset, and -Y - LG corresponds to -Y phase and negative frequency offset. The X-phase pulse labeled θ effects a 35.3° nutation of the ¹³C magnetization that returns it to the transverse plane where a 90° pulse, labeled ϕ , is phase cycled to achieve quadrature detection in t_1 (12), selects the ¹³C magnetization. The ¹⁵N magnetization evolves

under only the ¹H–¹⁵N heteronuclear dipolar coupling interaction during the t_2 period because the SEMA procedure removes the effects of ¹H homonuclear dipolar couplings and both ¹H and ¹⁵N chemical shifts. The ¹H–¹⁵N heteronuclear dipolar coupling frequencies are scaled by 0.82 in the SEMA procedure. Finally, unscaled ¹⁵N signals are acquired during t_3 in the presence of continuous ¹H and ¹³C irradiation for heteronuclear decoupling. The two-dimensional version of the experiment deletes the ¹H–¹⁵N coupling frequency dimension. The key features in the pulse sequences are the flip-flop Lee– Goldburg irradiation to decouple the homonuclear ¹³C dipolar

FIG. 2. The chemical and crystal structures of *N*-acetylglycine (*11*). All four molecules in a unit cell are shown and there are two magnetically inequivalent molecules marked as *molecule 1* and *molecule 2*. The chemical structure and its numbering are shown on the right.

interactions and the use of ¹³C to ¹⁵N cross-polarization for sequential transfer of magnetization along the peptide backbone. The field strength of the ¹H irradiation must exceed by a substantial margin the field strengths of the irradiations applied to the ¹⁵N and ¹³C spins in order to achieve efficient decoupling and narrow ¹³C and ¹⁵N resonance linewidths (*13*).

Polarization transfer experiments on dilute heteronuclear spin pairs (e.g., ${}^{13}C-{}^{15}N$) have been demonstrated to provide local structural information (7, 13, 14). The MOIST version of spin-lock cross-polarization (15) provides reliable and efficient transfer of magnetization from 13 C to 15 N in the presence of 1 H decoupling irradiation. The polarization transfer rate is on the order of heteronuclear dipolar coupling frequency. For example, in the case of a directly bonded ¹³C-¹⁵N spin pair, the dipolar coupling can be as large as 2 kHz, suggesting a crosspolarization mix time of around 0.5 ms for efficient transfer. Polarization transfer between proximate nonbonded ¹³C-^{.15}N spin pairs with larger internuclear distances can be accomplished with longer cross-polarization mix periods. The different responses to cross-polarization mix times can be used to good advantage to separately correlate bonded and more distant heteronuclear spin pairs for both assignment and structure determination purposes. Since the polarization transfer between ¹³C and ¹⁵N occurs in the rotating frame, the resulting cross peaks are always positive. This is advantageous since it eliminates the possibility of mixed positive and negative cross peaks, which limits the applicability of INEPT-type heteronuclear transfer experiments (16).

Figure 3 contains a two-dimensional ¹³C shift/¹⁵N shift correlation NMR spectrum of a single crystal of 2,4-¹³C, 3-¹⁵N labeled NAG at an arbitrary orientation with respect to the magnetic field. This spectrum was obtained with the pulse sequence diagrammed in Fig. 1A. The ¹³C to¹⁵N cross-polarization mix time was 1.0 ms. Each NAG molecule contains one ¹⁵N amide site and there are two magnetically inequivalent

molecules in each unit cell. Two resonances are observed in the ¹⁵N chemical shift frequency because each ¹⁵N resonance in the spectrum is correlated with the carbonyl carbon and the α -carbon ¹³C resonances that arise from magnetization transferred from the respective neighboring ¹³C-labeled sites. The contours describe single-line resonances in both the ¹⁵N shift and the ¹³C shift frequency dimensions, which is a consequence of the effects of full homonuclear and heteronuclear decoupling during both incremented intervals in the pulse sequence.

The cube in Fig. 4 corresponds to a three-dimensional ¹³C shift/¹H-¹⁵N coupling/¹⁵N shift correlation spectrum obtained

FIG. 3. Experimental two-dimensional ¹³C shift/¹⁵N shift correlation NMR spectrum of a single crystal sample of 2,4-¹³C, 3-¹⁵N NAG at an arbitrary orientation with respect to the magnetic field.

FIG. 4. Experimental three-dimensional ${}^{13}C$ shift/ ${}^{1}H-{}^{15}N$ coupling/ ${}^{15}N$ shift spectrum of the same sample as in Fig. 3.

with the pulse sequence diagrammed in Fig. 1B. The sample and experimental conditions were the same as those used to obtain the two-dimensional spectrum in Fig. 3. There are four signals in the cube, each of which is characterized by three different frequencies, and there are two carbon resonances correlated with each ¹⁵N resonance. Each ¹³C shift/¹⁵N shift plane in the spectrum in Fig. 4 corresponds to a magnetically inequivalent molecule that is resolved on the basis of its ¹H–¹⁵N coupling frequency. The linewidths observed along ¹³C shift, ¹H–¹⁵N coupling, and ¹⁵N shift frequency dimensions in this spectrum are 2–4 ppm, 400 Hz, and 2–3 ppm, respectively. The linewidths in the ¹³C shift and ¹H–¹⁵N coupling frequency dimensions are likely to improve with further development of the experimental methods and instrumentation.

The ¹³C homonuclear dipolar couplings among carbonyl carbon and α -carbon sites are decoupled during the t_1 interval with flip-flop Lee–Goldburg irradiation at the ¹³C resonance frequency. Since both ¹H and ¹⁵N irradiation are applied simultaneously to effect heteronuclear decoupling, the ¹³C evolution during t_1 reflects only the ¹³C chemical shift interaction. The implementation of homonuclear ¹³C decoupling is essential for these experiments to be applicable to uniformly ¹³Cand ¹⁵N-labeled proteins. Unfortunately, this results in substantial scaling (0.58) of the 13 C chemical shift frequencies that can only be recovered through the use of higher field magnets. Schmidt-Rohr (17) has recently demonstrated an alternative approach to homonuclear ¹³C decoupling in solids that has the advantage of allowing ¹³C signals to be directly observed but has the disadvantage of even larger scaling (0.33) of the chemical shift frequencies. The one-dimensional ¹H decoupled ¹³C shift spectra in Figs. 5A and 5B are extracted at the same ¹⁵N shift frequency from two-dimensional data sets. The single crystal sample of 1,2,4,5-13C, ¹⁵N-labeled NAG differs from the one used to obtain the data in Figs. 3 and 4 in that all four carbon sites are labeled with ¹³C, and the crystal is at a different

orientation in the magnet. The spectrum in Fig. 5A was obtained in the absence of the ¹³C Lee–Goldburg irradiation during t_1 . Both the carbonyl carbon and α -carbon ¹³C resonances exhibit multiple splittings and complex shapes because of the effects of ¹³C homonuclear dipolar couplings. The comparison to the spectrum in Fig. 5B shows that the homonuclear decoupling is highly effective. The spectrum in Fig. 5B has well-resolved single-line resonances from each carbonyl carbon and α -carbon site in the molecule.

There are many potential applications of the triple-resonance pulse sequences diagrammed in Fig. 1. It is possible to use these experiments to determine the dihedral angle for the amide backbone site by recording powder spectra on a specifically labeled ¹³C–¹⁵N spin pair. They provide building blocks for a variety of multidimensional solid-state NMR experiments. However, our primary interest is in protein structure determination by solid-state NMR spectroscopy. The pulse sequence shown in Fig. 1B has the potential to yield high-resolution three-dimensional spectra from uniformly ¹³C- and ¹⁵N-labeled proteins. In these spectra, four different orientationally dependent frequencies are associated with each resolved ¹⁵N amide site and provide valuable input for structure determination by solid-state NMR spectroscopy of oriented systems.

The pulse sequence also has the potential to be used to make sequential assignments of the peptide backbone resonances by varying the ¹³C to ¹⁵N cross-polarization mix time so that

FIG. 5. One-dimensional slices extracted from two-dimensional spectra. (A) Without ¹³C Lee–Goldburg homonuclear decoupling during t_1 . (B) With ¹³C Lee–Goldburg homonuclear decoupling during t_1 of a single crystal sample of 1,2,3,4–¹³C, ¹⁵N NAG at an arbitrary orientation with respect to the magnetic field.

FIG. 6. Experimental 13 C spectral strips from two-dimensional spectra. (A) With 13 C to 15 N mix time of 0.6 ms. (B) With 13 C to 15 N mix time of 3.0 ms.

directly bonded ¹³C sites are differentiated from more distant ¹³C sites on adjacent residues that transfer magnetization to amide ¹⁵N sites. A 3-ms ¹³C-¹⁵N cross-polarization mixing time can usually transfer magnetization from ¹³C of adjacent residues to amide nitrogen. To demonstrate this important application of the pulse sequence diagrammed in Fig. 1A, two-dimensional ¹³C shift/¹⁵N shift correlation spectra of 1,2,4,5-13C, 3-15N-labeled NAG were obtained with two different ${}^{13}C-{}^{15}N$ mix times. The carbon strips shown in Figs. 6A and 6B are extracted at the same ¹⁵N shift frequency from equivalent two-dimensional spectra. The data in Fig. 6A were obtained with a 0.6-ms C-N cross-polarization mix time, and those in Fig. 6B were obtained with a 3.0-ms mix time. The two cross peaks observed in Fig. 6A are due to the magnetization transfer from the directly bonded carbonyl carbon (2-C) and methylene carbon (4-C) to the amide nitrogen. With a 3.0-ms mix time, the magnetizations are also transferred to the methyl carbon (1-C) and carboxyl carbon (4-C) sites, therefore four cross peaks corresponding to the four carbons are observed in Fig. 6B. Thus, it is possible to "walk" through the peptide backbone with magnetization transfers through either carbonyl carbon or α -carbons with this approach. The combination of the angular information provided by the frequencies associated with each ¹⁵N amide site and the sequential assignments from these correlation experiments has the potential to determine the complete three-dimensional backbone structure of a protein. In this regard, the carbonyl carbon and α -carbon ¹³C resonance frequencies are a welcome bonus that can lead to more accurate backbone structures.

EXPERIMENTAL

The solid-state NMR experiments were performed at room temperature on a homebuilt triple-resonance spectrometer with a 12.9-T wide-bore Magnex 550/89 magnet. The homebuilt probe had a single 5-mm solenoid coil triply tuned to ¹H, ¹³C, and ¹⁵N resonance frequencies of 549.82, 138.27, and 55.72 MHz, respectively. The probe has 30 dB of isolation from the ¹³C to the ¹⁵N channels, and a narrow bandwidth filter was added to the ¹⁵N channel to ensure rejection of ¹³C frequencies and noise during data acquisition. A RF field strength of 50 kHz (90° pulse width of 5 μ s) was utilized on the ¹H. ¹³C. and ¹⁵N channels and this corresponds to off-resonance Lee-Goldburg frequency jumps of ± 35.1 kHz. During the t_2 and t_3 periods, continuous irradiation at the ¹³C resonance frequency with a RF field strength of 40 kHz was used for heteronuclear decoupling. A cross-polarization mix time of 1.0 ms was used to transfer magnetization from ¹³C sites to ¹⁵N amide sites. During the ¹³C to ¹⁵N cross-polarization mix period, continuous ¹H irradiation with a field strength of 83.3 kHz was applied. A total of 32 t_1 and 32 t_2 experiments were performed with dwell times of 32.6 and 40.8 µs, respectively. Two scans were coadded during each increment of t_1 and t_2 in the threedimensional experiment. Eight scans were coadded during each increment of t_1 in the two-dimensional experiment. A recycle delay of 20 s was used in combination with a flip-back pulse to restore ¹H magnetization. The experimental scaling factors were measured to be 0.58 \pm 0.01 during t_1 and 0.81 \pm 0.01 during t_2 . Experimental data were processed using Felix (Biosym Technologies). The final processed matrix had 64 imes 128×128 points. The ¹³C and ¹⁵N chemical shifts are referenced with respect to the ¹³C frequency of the deshielded peak of adamantane at 38.6 ppm and the ¹⁵N frequency of liquid ammonia at 0 ppm, respectively.

2,4-¹³C, 3-¹⁵N-labeled *N*-acetylglycine was synthesized by coupling 2-¹³C, ¹⁵N-labeled glycine and 2,2'-¹³C-labeled acetic anhydride (*18*). A 60-mg single crystal of 2,4-¹³C, 3-¹⁵N NAG was crystallized from aqueous solution. 1,2,4,5-¹³C, 3-¹⁵N-labeled *N*-acetylglycine was synthesized by coupling U-¹³C, ¹⁵N-labeled glycine and U-¹³C-labeled acetic anhydride. A 35-mg single crystal of 1,2,4,5-¹³C, 3-¹⁵N NAG was cocrystallized with natural abundance NAG in the ratio 1:3 from aqueous solution to minimize the intermolecular interaction. The isotopically labeled compounds were obtained from Cambridge Isotope Laboratories (Andover, MA). Figure 2 shows the chemical and crystal structures of NAG, which has two magnetically inequivalent molecules per unit cell (*11*).

ACKNOWLEDGMENTS

We thank Dr. Ronald McNamara for assistance with the instrumentation for the triple-resonance experiments. This research was supported by Grants RO1GM29754 and R37GM24266 from the National Institute of Health, and utilized the Resource for Solid-state NMR of Proteins at the University of Pennsylvania, supported by Grant P41RR09731 from the Biomedical Research Technology Program, Division of Research Resources, National Institute of Health. Z. Gu acknowledges support of postdoctoral Fellowship 5999-99 from the Leukemia Society of America.

REFERENCES

- F. M. Marassi, A. Ramamoorthy, and S. J. Opella, Complete resolution of the solid-state NMR spectrum of a uniformly N-15-labeled membrane protein in phospholipid bilayers, *Proc. Natl. Acad. Sci.* USA 94, 8551 (1997).
- Y. Kim, K. Valentine, S. J. Opella, S. L. Schendel, and W. A. Cramer, Solid-state NMR studies of the membrane-bound closed state of the colicin E1 channel domain in lipid bilayers, *Protein Sci.* 7, 342 (1998).
- M. Ikura, L. E. Kay, and A. Bax, A novel approach for sequential assignment of H-1, C-13, and N-15 spectra of larger proteins heteronuclear triple-resonance 3-dimensional NMR spectroscopy—Application to calmodulin, *Biochemistry* 29, 4659 (1990).
- B. Q. Sun, C. M. Rienstra, P. R. Costa, J. R. Williamson, and R. G. Griffin, 3D ¹⁵N-¹³C-¹³C chemical shift correlation spectroscopy in rotating solids, *J. Am. Chem. Soc.* **119**, 8540 (1997).
- M. Lee and W. I. Goldburg, NMR line narrowing by a rotating rf field, Phys. Rev. A 140, 1261 (1965).
- M. Mehring and J. S. Waugh, Magic-angle NMR experiments in solids, *Phys. Rev. B* 9, 3459 (1972).

- A. Bielecki, A. C. Kolbert, and M. H. Levitt, Frequency-switched pulse sequences: Homonuclear decoupling and dilute spin NMR in solids, *Chem. Phys. Lett.* **155**, 341 (1989).
- J. Schaefer, R. A. McKay, and E. O. Stejskal, Double cross polarization NMR of solids, *J. Magn. Reson.* 34, 443 (1979).
- C. H. Wu, A. Ramamoorthy, and S. J. Opella, High-resolution heteronuclear dipolar solid state NMR, *J. Magn. Res. B* 109, 270 (1994).
- S. J. Opella and P. L. Stewart, Solid-state nuclear magnetic resonance structural studies of proteins, *Methods Enzymol.* 176, 242 (1989).
- G. B. Carpenter and J. Donohue, The crystal structure of N-acetylglycine, J. Am. Chem. Soc. 72, 2315 (1950).
- D. J. States, R. A. Haberkorn, and D. J. Ruben, A two-dimensional nuclear overhauser experiment with pure absorption phase in four quadrants, *J. Magn. Reson.* 48, 286 (1982).
- M. Baldus, D. G. Geurts, S. Hediger, and B. H. Meier, Efficient ¹⁵N-¹³C polarization transfer by adiabatic passage Hartman–Hahn cross polarization, *J. Magn. Reson. A* **118**, 140 (1996).
- E. O. Stejskal, J. Schaefer, and R. A. McKay, Analysis of DCP rates in solid proteins, *J. Magn. Reson.* 57, 471 (1984).
- M. H. Levitt, D. Suter, and R. R. Ernst, Spin dynamics and thermodynamics in solid state NMR cross polarization, *J. Chem. Phys.* 84, 4243 (1986).
- K. V. Ramanathan and S. J. Opella, High resolution solid state ¹³C-¹⁴N and ¹³C-¹⁵N heteronuclear correlation spectroscopy, *J. Magn. Reson.* 86, 227 (1990).
- K. Schmidt-Rohr, Complete dipolar decoupling of ¹³C and its use in two-dimensional double-quantum solid-state NMR for determining polymer conformations, *J. Magn. Reson.* **131**, 209 (1998).
- 18. R. M. Herbst and D. Shemin, Acetylglycine, Org. Synth. 11 (1932).